A method for generating training data for a protective face mask detection system

Author:

Ryumina E.V., ,Ryumin D.A.,Markitantov M.V.,Karpov A.A., , ,

Abstract

Monitoring and evaluation of the safety level of individuals is one of the most important problems of the modern world, which was forced to change due to the emergence of the COVID-19 virus. To increase the safety level of individuals, new information technologies are needed that can stop the spread of infection by minimizing the threat of outbreaks and monitor compliance with recommended measures. These technologies, in particular, include intelligent tracking systems of the presence of protective face masks. For these systems, this article proposes a new method for generating training data that combines data augmentation techniques, such as Mixup and Insert. The proposed method is tested on two datasets, namely, the MAsked FAce dataset and the Real-World Masked Face Recognition Dataset. For these datasets, values of the unweighted average recalls of 98.51% and 98.50% are obtained. In addition, the effectiveness of the proposed method is tested on images with face mask imitation on people's faces, and an automated technique is proposed for reducing type I and II errors. Using the proposed automated technique, it is possible to reduce the number of type II errors from 174 to 32 for the Real-World Masked Face Recognition Dataset, and from 40 to 14 for images with painted protective face masks.

Funder

Russian Foundation for Basic Research

Publisher

Samara National Research University

Subject

Electrical and Electronic Engineering,Computer Science Applications,Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Image Warping and Its Application for Data Augmentation when Training Deep Neural Networks;Informatics and Automation;2024-03-28

2. Building surface damage recognition based on synthetic data;2023 IX International Conference on Information Technology and Nanotechnology (ITNT);2023-04-17

3. Orthogonalization and Parameterization of Convolutional Kernels in Machine Learning for Image and Video Compression;2023 IX International Conference on Information Technology and Nanotechnology (ITNT);2023-04-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3