Orbital angular momentum of superpositions of optical vortices after passing through a sector diaphragm

Author:

Kovalev A.A., ,

Abstract

In optical communications, it is desirable to know some quantities describing a light field, that are conserved on propagation or resistant to some distortions. Typically, optical vortex beams are characterized by their orbital angular momentum (OAM) and/or topological charge (TC). Here, we study what happens with the OAM of a superposition of two or several optical vortices (with different TCs) when it is distorted by a hard-edge sector aperture. We discover several cases when such perturbation does not violate the OAM of the whole superposition. The first case is when the incident beam consists of two vortices of the same power. The second case is when the aperture half-angle equals an integer number of π divided by the difference between the topological charges. For more than two incident beams, this angle equals an integer number of π divided by the greatest common divisor of all possible differences between the topological charges. For two incident vortex beams with real-valued radial envelopes of the complex amplitudes, the OAM is also conserved when there is a ±(pi)/2 phase delay between the beams. When two beams with the same power pass through a binary radial grating, their total OAM is also conserved.

Funder

Russian Science Foundation

Ministry of Science and Higher Education of the Russian Federation

Publisher

Samara National Research University

Subject

Electrical and Electronic Engineering,Computer Science Applications,Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Orbital Angular Momentum of Structured LG Beams after Astigmatic Transformation;Optical Memory and Neural Networks;2023-11

2. The optical vortices focusing by subwavelength microelements with variable relief height using high-performance computer systems;Optical Technologies for Telecommunications 2022;2023-10-04

3. Simulation of the vortex beams formation while diffraction on square contour-like and spiral apertures;2023 IX International Conference on Information Technology and Nanotechnology (ITNT);2023-04-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3