Modeling of quantum-like cognitive phenomena by the Fourier-holography technique under the choice of alternatives

Author:

Pavlov A.V.1

Affiliation:

1. ITMO University, St. Petersburg, Russia

Abstract

The article is dedicated to the search for a biologically motivated mechanism of the cognitive phenomenon of violation of the classical formula of total probability for the disjunction of incompatible events, which is considered by a number of researchers as a quantum-like phenomenon. A classical mechanism implemented by the 6f Fourier holography scheme of the resonant architecture that does not require reference to quantum mechanics either in its physical nature or at the level of formalism is demonstrated. In the analysis, the decision-making is interpreted as a choice of alternatives by using the non-cooperative game "Prisoner's Dilemma". The approach to the task is based on the search for a mechanism for forming a conditional estimate under a condition that contradicts the rule of monotonous decision logic. It is demonstrated that this estimate, in contrast to the unconditional and conditional one with a non-contradictory condition, is formed by logic with exception. The ring architecture of the holographic setup corresponds to the biologically inspired neural network concept of the excitation ring and implements cognitive dissonance on logic with exception. Conditions and ranges of violation of the classical formula of total probability in relation to the correlation radius of the reference image recorded in a hologram storing the monotone logic inference rule are analytically determined. The analytical model is confirmed by a quantitative coincidence of the results of numerical modeling with the published results of natural experiments.

Funder

Russian Foundation for Basic Research

Publisher

Samara State National Research University

Subject

Electrical and Electronic Engineering,Computer Science Applications,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3