Earth remote sensing imagery classification using a multi-sensor super-resolution fusion algorithm

Author:

Belov A.M.1,Denisova A.Y.1

Affiliation:

1. Samara National Research University, 34, Moskovskoye shosse, Samara, 443086, Russia

Abstract

Earth remote sensing data fusion is intended to produce images of higher quality than the original ones. However, the fusion impact on further thematic processing remains an open question because fusion methods are mostly used to improve the visual data representation. This article addresses an issue of the effect of fusion with increasing spatial and spectral resolution of data on thematic classification of images using various state-of-the-art classifiers and features extraction methods. In this paper, we use our own algorithm to perform multi-frame image fusion over optical remote sensing images with different spatial and spectral resolutions. For classification, we applied support vector machines and Random Forest algorithms. For features, we used spectral channels, extended attribute profiles and local feature attribute profiles. An experimental study was carried out using model images of four imaging systems. The resulting image had a spatial resolution of 2, 3, 4 and 5 times better than for the original images of each imaging system, respectively. As a result of our studies, it was revealed that for the support vector machines method, fusion was inexpedient since excessive spatial details had a negative effect on the classification. For the Random Forest algorithm, the classification results of a fused image were more accurate than for the original low-resolution images in 90% of cases. For example, for images with the smallest difference in spatial resolution (2 times) from the fusion result, the classification accuracy of the fused image was on average 4% higher. In addition, the results obtained for the Random Forest algorithm with fusion were better than the results for the support vector machines method without fusion. Additionally, it was shown that the classification accuracy of a fused image using the Random Forest method could be increased by an average of 9% due to the use of extended attribute profiles as features. Thus, when using data fusion, it is better to use the Random Forest classifier, whereas using fusion with the support vector machines method is not recommended.

Funder

Russian Foundation for Basic Research

Publisher

Samara State National Research University

Subject

Electrical and Electronic Engineering,Computer Science Applications,Atomic and Molecular Physics, and Optics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Object-oriented classification of remote sensing earth images using machine;Bulletin of NSAU (Novosibirsk State Agrarian University);2024-07-08

2. Monitoring of post-fire reforestation based on vegetation indices of optical and radio bands;29th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics;2023-10-17

3. Intelligent analysis of landscape architecture based on digital technology under 5G network;Journal of Intelligent & Fuzzy Systems;2023-08-24

4. Schemes of Combining Discriminant Functions to Improve the Classification Accuracy for Ensemble of Data Sources;Optoelectronics, Instrumentation and Data Processing;2023-08

5. Development of Mathematical Methods and Algorithms for Filtering Images Obtained from Unmanned Aerial Vehicle Camera;2023 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM);2023-05-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3