Hyperspectral data compression based upon the principal component analysis

Author:

Minkin A.S.1,Nikolaeva O.V.2,Russkov A.A.2

Affiliation:

1. RSC Kurchatov Institute, 123182, Moscow, Russia, Kurchatov Sq 1

2. Keldysh Institute of Applied Mathematics RAS, 123047, Moscow, Russia, Miusskaya Sq 4

Abstract

The paper is aimed at developing an algorithm of hyperspectral data compression that combines small losses with high compression rate. The algorithm relies on a principal component analysis and a method of exhaustion. The principal components are singular vectors of an initial signal matrix, which are found by the method of exhaustion. A retrieved signal matrix is formed in parallel. The process continues until a required retrieval error is attained. The algorithm is described in detail and input and output parameters are specified. Testing is performed using AVIRIS data (Airborne Visible-Infrared Imaging Spectrometer). Three images of differently looking sky (clear sky, partly clouded sky, and overcast skies) are analyzed. For each image, testing is performed for all spectral bands and for a set of bands from which high water-vapour absorption bands are excluded. Retrieval errors versus compression rates are presented. The error formulas include the root mean square deviation, the noise-to-signal ratio, the mean structural similarity index, and the mean relative deviation. It is shown that the retrieval errors decrease by more than an order of magnitude if spectral bands with high gas absorption are disregarded. It is shown that the reason is that weak signals in the absorption bands are measured with great errors, leading to a weak dependence between the spectra in different spatial pixels. A mean cosine distance between the spectra in different spatial pixels is suggested to be used to assess the image compressibility.

Publisher

Samara State National Research University

Subject

Electrical and Electronic Engineering,Computer Science Applications,Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3