INFLUENCE OF HIGH-ORDER TERMS IN THE SOLUTION GENERALIZING THE APPROACH OF M. WILLIAMS, TAKING INTO ACCOUNT THE ANISOTROPY OF THE MATERIAL

Author:

Mushankova K. A.ORCID,Stepanova L. V.ORCID

Abstract

The research is devoted to the study of the stress field at the crack tip in an anisotropic material with three mutually orthogonal axes of symmetry of the fourth order (with cubic symmetry). A plane case is considered when one of the axes of symmetry is orthogonal to the cracked plate, and the remaining two axes lie in the plane of the plate. The paper presents an asymptotic analysis of the contribution of higher approximations in the generalized asymptotic decomposition of mechanical fields near the crack tip in a linearly elastic anisotropic material with cubic symmetry of its elastic properties. In the article, based on the obtained solution of M. Nejati and co-authors for an infinite anisotropic plate with a central crack, circumferential apportionments of the stress tensor components at the crack tip at various distances fromthe crack tip are constructed, which makes it possible to estimate the contribution of non-singular (regular)terms to the general asymptotic representation of mechanical fields generated by an acute crack. In the work of M. Nejati, the contribution of exclusively T-stresses is analyzed, then, as shown in this work, the terms following the T-stress play a significant role in describing the fields induced by the crack. A comparison of the angular distributions of the stress tensor components constructed at different distances from the crack tip indicates that with the increase of distances from the crack tip, it is required to preserve in asymptotic series representing stresses, displacements and strains near the tip of the crack, the terms of high order of smallness. The preservation of the terms of high order of smallness can be used to expand the domain in which the asymptotic solution in the series is valid.

Publisher

Samara National Research University

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3