Subharmonic envelopes for functions on domains

Author:

Khabibullin B. N.ORCID

Abstract

One of the most common problems in various fields of real and complex analysis is the questions of the existence and construction for a given function of an envelope from below or from above of a function from a special class H. We consider a case when H is the convex cone of all subharmonic functions on the domain D of a finite-dimensional Euclidean space over the field of real numbers. For a pair of subharmonic functions u and M from this convex cone H, dual necessary and sufficient conditions are established under which there is a subharmonic function h ̸≡ −∞, “dampening the growth” of the function u in the sense that the values of the sum of u + h at each point of D is not greater than the value of the function M at the same point. These results are supposed to be applied in the future to questions of non-triviality of weight classes of holomorphic functions, to the description of zero sets and uniqueness sets for such classes, to approximation problems of the function theory, etc.

Publisher

Samara National Research University

Reference12 articles.

1. Hayman W.K., Kennedy P.B. Subharmonic functions. Volume 1. Moscow: Mir, 1994, 304 p. (In Russ.)

2. Notions of Convexity

3. Evans L.C., Gariepy R.F. Measure Theory and Fine Properties of Functions. Novosibirsk: Nauchnaya kniga (IDMI), 2002, 215 p. Available at: https://djvu.online/file/NMAz58Vqw6Mi0?ysclid=lnu2ktxq8v26436524. (In Russ.)

4. Khabibullin B.N., Rozit A.P., Khabibullina E.B. Order versions of the Hahn-˙-B˙ anach theorem and envelopes. II. Applications to the function theory, In: Complex Analysis. Mathematical Physics, Itogi Nauki i Tekhniki, Ser. Sovrem. Mat. Pril. Temat. Obz.. Moscow: VINITI RAN, 2019, vol. 162, pp. 93–135. Available at: https://www.mathnet.ru/rus/into445. (In Russ.)

5. Khabibullin B.N. Envelopes in the function theory. Ufa: RITs BashGU, 2021, 140 p. Available at: https://elib.bashedu.ru/dl/local/HabibullinBN_Ogib.vteor.funkci_mon_2021.pdf. (In Russ.)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3