Improving the efficiency of aviation turbofan engines by using an intercooler and a recuperative heat exchanger

Author:

Omar H.,Kuz'michev V. S.,Tkachenko A. Yu.

Abstract

Continuous improvement of fuel efficiency of aircraft engines is the main global trend in modern engine construction. To date, aviation gas turbine engines have reached a high degree of thermodynamic and design-and technology perfection. One of the promising ways to further improve their fuel efficiency is the use of complex thermodynamic cycles with turbine exhaust heat regeneration and with intermediate cooling in the process of air compression. Until recently, the use of cycles with a recuperative heat exchanger and an intercooler in aircraft gas turbine engines was restrained by a significant increase in the mass of the power plant due to the installation of heat exchangers. Currently, it has become technologically possible to create compact, light, high-efficiency heat exchangers for use on aircraft without compromising their performance. An important target in the design of engines with heat recovery is to select the parameters of the working process that provide maximum efficiency of the aircraft system. The article focuses on the statement of the task of optimization and choice of rational parameters of the working process of a bypass three-shaft turbojet engine with an intercooler and a recuperative heat exchanger. On the basis of the developed method multi-criteria optimization was carried out by means of numerical simulations. The results of optimization of thermodynamic cycle parameters of a bypass three-shaft turbojet engine with an intercooler and a recuperative heat exchanger in the aircraft system according to such criteria as the total weight of the engine and fuel required for the flight, and the aircraft specific fuel consumption per ton - kilometer of the payload are presented. A passenger aircraft of the Airbus A310-300 type was selected. The developed mathematical model for calculating the mass of a compact heat exchanger, designed to solve optimization problems at the stage of conceptual design of the engine is presented. The developed methods and models are implemented in the ASTRA program. The possibility of improving the efficiency of turbofan engines due to the use of complex thermodynamic cycles is shown.

Publisher

Samara State National Research University

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3