Analysis of control programs and climb paths of the hypersonic first stage of an aerospace system

Author:

Balakin V. L.1,Krikunov M. M.1

Affiliation:

1. Samara National Research University, Russian Federation

Abstract

Control programs and flight paths of the hypersonic first stage of an aerospace system in climb with acceleration to hypersonic velocity are analyzed. Two approaches to determining the control programs and flight paths are identified: the "traditional" approach and the "optimization" one. The "traditional" approach implies specifying a typical mission profile with max-q and peak heat flux. In the case of the "optimization" approach the problem of propellant mass minimum is stated and solved using the method of Pontryagin’s maximum principle. It concerns the mass of propellant consumed in hypersonic acceleration for various terminal flight path angles. Optimal control programs and optimal flight paths are determined. Those meeting the max-q and peak heat flux requirements are selected. The results of modeling the motion of a hypersonic booster with typical and optimal angle-of-attack schedules corresponding to the "traditional" and "optimization" approaches are presented and discussed. It is established that less propellant is consumed in the case of optimal control, which is accounted for by more efficient use of the hypersonic booster's aerodynamic performance due to direct control of the angle of attack.

Publisher

Samara State National Research University

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimization of trajectory motion of the first stage of an aerospace system;VESTNIK of Samara University. Aerospace and Mechanical Engineering;2024-04-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3