Aspects of simulating stable low-cycle fatigue crack growth in the main parts of aircraft gas turbine engines

Author:

Ryabov A. A.ORCID,Mokhov K. Yu.ORCID,Voronkov O. V.,Kudryavtsev A. Yu.ORCID,Museev A. A.

Abstract

The article presents theoretical basis for the industry-based approach for finite element modeling of stable crack growth in the main parts of an aviation gas turbine engine. An axial compressor disc is used as an example. Parameters of typical FE-models applied are provided. In addition, some effective practices of FE-modeling representing the novelty of this work are described: crack evolution increment under-relaxation and automation of the process of constructing a new crack front. Some simulation results are presented demonstrating implementation of the approach steps and benefits gained from the application of the listed features. Under-relaxation ensures maintaining the stability of a numerical solution for a significantly larger crack increment size. This leads to essential effort decrease as a result of reducing the total number of simulation cycles required. Automatic construction of a new crack front allows significant improvement in crack representation accuracy during the simulation process due to the greater number of points for which crack front evolution is determined.

Publisher

Samara National Research University

Subject

Ocean Engineering

Reference27 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3