CONTROL OF EQUIPMENT FOR INCREMENTAL FORMING USING A LASER TRACKER

Author:

Sazonnikova Nadezhda,Ilyukhin Vladimir,Surudin Sergey,Mezentsev Dmitry

Abstract

The technological equipment geometry control has a significant impact on the overall quality and performance of the product in many manufacturing processes such as multi-position assembly and stamping as well as on productivity and production costs. One of the most promising means of technology equipment geometry control in the digital economy condition is a laser tracker. The robotic incremental sheet forming process assumes the necessary flexibility and profitability due to a very flexible tool chain. In this case, the trajectory of the universal tool is set using a processing program determined by the product geometry. The technological equipment geometry control of the robotic complex for incremental sheet forming was carried out in 2 stages. At the first stage, the measurements were carried out manually in the absolute range measuring system mode. At the second stage, a dynamic measurement of the blank plane displacement was carried out automatically in the interferometer mode during forming process. It was shown that the largest slipway deviation more than 1 mm and it occurs in the direction of the main application of force, i.e. in the product manufacture depth. This value can have a serious impact on the of manufacturing parts geometry accuracy. Based on the measurement results, it can be concluded that it is necessary to increase the rigidity of the frame, either by adding additional fasteners, or by using more rigid materials of its construction.

Publisher

Samara National Research University

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3