Finding dependencies in data based on methods of satisfying table con-straints

Author:

Zuenko Alexander A.ORCID,Zuenko Olga N.ORCID

Abstract

The work deals with the search for a special type of regularities in data, called frequent patterns. A frequent pattern is understood as a certain set of attributes that characterizes a sufficiently large number of objects of the training sample. There are many methods for pattern discovery, but they usually do not allow flexible consideration of necessary requirements for their type. Taking into account the new conditions that the desired patterns must meet leads in practice to a time-consuming modification of used algorithms and a decrease in computing performance. This article proposes a new approach based on the constraint programming paradigm, which is free from the listed disadvantages. The approach is based on the original way of presenting the training sample using specialized table constraints – compressed D-type tables, on the author's method of backtracking, as well as on specialized reduction rules for table constraints. Particular attention is paid to solving the closed patterns discovery problem, which is included as part of the solution of all machine learning problems considered in the work, which means taking into account additional requirements for the type of patterns. As additional requirements to the type of pattern, constraints on the frequency of occurrence of a closed pattern, as well as conditions for the occurrence of some element (attribute) into the pattern, are considered. To the basic rules for the reduction of compressed D-type tables, rules are added that take into account the interesting attributes of the analyzed patterns. The advantage of the approach is that the taking into account and analyzing new constraints makes it possible to speed up the calculation process.

Publisher

Samara National Research University

Subject

General Medicine

Reference16 articles.

1. Russel S, Norvig P. Artificial Intelligence: A Modern Approach. 3rd ed. Prentice Hall, 2010. 1132 p.

2. Bisaria J, Shivastava N, Pardasani KR. A rough set model for constraint driven mining of sequentioal patterns. Int. J. pf Computer and Network Sequrity. 2009; 1(1).

3. A Survey of Utility-Oriented Pattern Mining

4. A Relaxation-Based Approach for Mining Diverse Closed Patterns

5. Constraint Programming for Association Rules

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3