Predicting high-harm offending using machine learning: an application to outlaw motorcycle gangs

Author:

Cubitt Timothy,Morgan Anthony

Abstract

Risk assessment tools are used widely in the criminal justice response to serious offenders. Despite growing recognition that certain outlaw motorcycle gang (OMCG) members and their clubs are likely to be involved in crime, particularly serious crime, this is not an area where risk assessment tools have been developed and validated. The nature of offending by OMCGs, and policing responses to OMCGs, requires a novel approach to risk assessment. This study uses machine learning methods to develop a risk assessment tool to predict recorded high-harm offending. Results are compared with those of a model predicting any recorded offending. The model predicted high-harm offending with a high degree of accuracy. Importantly, the tool appeared able to accurately identify offenders prior to the point of escalation. This has important implications for informing law enforcement responses.

Publisher

Australian Institute of Criminology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3