Degradation and Mineralization of Pesticide Isoprocarb by Electro Fenton Process

Author:

Bakhti Hayet, ,Ben Hamida Najib,Hauchard Didier, , ,

Abstract

Electro Fenton with volumic cathode consisting of granules of carbon graphite was applied to degrade the insecticide Isoprocarb in aqueous solutions. The effects of various factors including current intensity and pesticide initial concentration were investigated in order to obtain the best experimental conditions for its degradation and mineralization. Kinetic studies determined that the insecticide removal followed a pseudo first order. The absolute rate constant for the oxidation of Isoprocarb by hydroxyl radicals were determined as 3.32 × 109 L mol−1 s−1 by competitive kinetics method taking benzoic acid as reference compound. In this work, we have also studied the mineralization of aqueous solutions of this insecticide in term of total organic carbon (TOC). After 3 hours of electrolysis, and at I = 800 mA, more than 40 % of the organic carbon presented in the solution is mineralized. Various aromatic by-products, principally formed by oxidation of the pesticide, accompanied by hydroxylation of the aromatic cycle, have been identified. Thus, the oxidative opening of the aromatic ring leads to the formation of carboxylic acids and nitrate ions. The biodegradability of Isoprocarb is estimated by the measurement of its Biochemical Oxygen Demand (BOD5

Publisher

Brawijaya University

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3