Water quality impacts of climate change, land use, and population growth in the Chesapeake Bay watershed

Author:

Bhatt Gopal1,Linker Lewis2,Shenk Gary3ORCID,Bertani Isabella4,Tian Richard4,Rigelman Jessica5,Hinson Kyle6ORCID,Claggett Peter7ORCID

Affiliation:

1. Pennsylvania State University, Chesapeake Bay Program Office Annapolis Maryland USA

2. U.S. Environmental Protection Agency, Chesapeake Bay Program Office Annapolis Maryland USA

3. Virginia/West Virginia Water Science Center, U.S. Geological Survey Richmond Virginia USA

4. University of Maryland Center for Environmental Science, Chesapeake Bay Program Office Annapolis Maryland USA

5. Chesapeake Bay Program Office, J7 Consulting LLC Annapolis Maryland USA

6. Chesapeake Research Consortium, Chesapeake Bay Program Office Annapolis Maryland USA

7. Lower Mississippi‐Gulf Water Science Center, U.S. Geological Survey Annapolis Maryland USA

Abstract

AbstractThe 2010 Chesapeake Bay Total Maximum Daily Load was established for the water quality and ecological restoration of the Chesapeake Bay. In 2017, the latest science, data, and modeling tools were used to develop revised Watershed Implementation Plans (WIPs). In this article, we examine the vulnerability of the Chesapeake Bay watershed to the combined pressures of climate change and growth in population, agricultural intensity, and economic activity for the 60‐year period 1995–2055. The results will be used to revise WIPs, as needed, to account for expected increases in loads. Assessing changes relative to 1995 for the years 2025, 2035, 2045, and 2055, mean annual precipitation increases of 3.11%, 4.21%, 5.34%, and 6.91%, respectively, air temperature increases of 1.12, 1.45, 1.84, and 2.12°C, respectively, and potential evapotranspiration increases of 3.36%, 4.43%, 5.54%, and 6.35%, respectively, are projected. Population in the watershed is expected to grow by 3.5 million between 2025 and 2055. Watershed model results show incremental increases in streamflow (2.3%–6.2%), nitrogen (2.6%–10.8%), phosphorus (4.5%–26.7%), and sediment (3.8%–18.8%) loads to the tidal Bay due to climate change. Growth in population, agricultural intensity, development, and economic activity resulted in relatively smaller increases in loads compared to climate change.

Publisher

Wiley

Subject

Earth-Surface Processes,Water Science and Technology,Ecology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3