Drivers of future streamflow changes in watersheds across the Northeastern United States

Author:

Cockburn Charlotte1ORCID,Winter Jonathan M.2ORCID,Osterberg Erich C.1ORCID,Magilligan Francis J.2ORCID

Affiliation:

1. Department of Earth Science Dartmouth College New Hampshire Hanover USA

2. Department of Geography Dartmouth College Hanover New Hampshire USA

Abstract

AbstractAccurate projections of streamflow, which have implications for flooding, water resources, hydropower, and ecosystems, are critical to climate change adaptation and require an understanding of streamflow sensitivity to climate drivers. The northeastern United States has experienced a dramatic increase in extreme precipitation over the past 25 years; however, the effects of these changes, as well as changes in other drivers of streamflow, remain unclear. Here, we use a random forest model forced with a regional climate model to examine historical and future streamflow dynamics of four watersheds across the Northeast. We find that streamflow in the cold season (November–May) is primarily driven by 3‐day rainfall and antecedent wetness (Antecedent Precipitation Index) in three rainfall‐dominant watersheds, and 30‐day rainfall, antecedent wetness, and 30‐day snowmelt in the fourth, more snowmelt‐dominated watershed. In the warm season (June–October), streamflow is driven by antecedent wetness and rainfall in all watersheds. By the end of the century (2070–2099), cold season streamflow depends on the importance placed on snow in the machine learning model, with changes ranging from −7% (with snow) to +40% (without snow) in a single watershed. Simulated future warm season streamflow increases in two watersheds (56% and 193%) due to increased precipitation and antecedent soil wetness, but decreases in the other two watersheds (−6% and −27%) due to reduced precipitation.

Publisher

Wiley

Subject

Earth-Surface Processes,Water Science and Technology,Ecology

Reference68 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3