Rapid geomorphic assessment walkabouts as a tool for stream mitigation monitoring

Author:

Goode Jaime R.1,Hawley Robert J.1,Lewis Robert H.2,Mulhall Bethany2

Affiliation:

1. Sustainable Streams, LLC Louisville Kentucky USA

2. Kentucky Department of Fish and Wildlife Resources Frankfort Kentucky USA

Abstract

AbstractMonitoring of compensatory stream mitigation projects conventionally relies on spatially discrete geometric data and habitat assessments collected from representative reaches. Project success is evaluated by extrapolating site‐scale metrics such as rapid bioassessment protocol (RBP) scores and time‐series changes in width‐to‐depth ratios to adjacent reaches. For example, an excellent RBP score at one location is used to infer excellent habitat in nearby reaches. This paper compares spatially discrete and continuous monitoring data from 38 km of restored stream length on a stream mitigation project in central Kentucky to document how conventional site‐level metrics may not represent conditions in adjacent reaches, particularly on projects plagued by post‐construction geomorphic instability (e.g., headcut migration, propagation of bank erosion, and chute cutoff formation). Over a 5‐year monitoring period, rapid visual assessment walkabouts documented project‐scale geomorphic process trajectories that were not captured by conventional site‐specific monitoring. Early detection of geomorphic instability from this rapid monitoring approach facilitated cost‐effective and tailored adaptive management (e.g., planting of live stakes to arrest bank erosion). Full‐census walkabouts can thereby help to improve mitigation credit valuation, enhance long‐term habitat protection, and facilitate successful steam restoration outcomes.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3