Optimizing placement of bioretention systems in the US Puget Sound region

Author:

Mahat Anish1,Wu Joan Q.2,Jayakaran Anand D.2ORCID,Dahal M. Samrat2,Ewing Robert P.3

Affiliation:

1. CDM Smith Inc—Technical Service Unit‐Water Resources Group Philadelphia Pennsylvania USA

2. Department of Biological Systems Engineering and Puyallup Research and Extension Center Washington State University Puyallup Washington USA

3. Climate LLC Seattle Washington USA

Abstract

AbstractThe Puget Sound Basin, US Pacific Northwest, is experiencing rapid population and urban growth. This growth adversely impacts local ecosystems, especially the spawning and rearing habitat for several salmonid species. Sustainable urban design strategies such as green stormwater infrastructure (GSI) are required in the region to manage stormwater onsite when new development occurs. However, the effectiveness of any GSI depends on its location relative to where stormwater is produced. This study aimed to develop a Geographic Information System (GIS)‐based framework for the optimal placement of GSI, specifically bioretention systems. We computed the Hydrologic Sensitivity Index (λHSI, indicating runoff generation potential at a landscape location) for the lower Puyallup River Watershed study area. The index and federal and state feasibility criteria were used to identify suitable sites for bioretention systems. The suitability of identified sites was verified through ground‐truthing, including soil sampling and infiltration testing. We found that 2.5% of the watershed area was suitable for bioretention, concentrated in the center and north of the study watershed. The method described in this study can be readily applied to watersheds for which spatial data (topography, soil, and land use) are available. We recommend choosing locations with high λHSI when resources are limited since these locations contribute most to runoff generation and urban flooding.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3