Modeling source water disinfection byproducts formation potential using environmental variables

Author:

Wang Kezhen1ORCID,Mukundan Rajith2,Gelda Rakesh K.2

Affiliation:

1. The Institute for Sustainable Cities Hunter College of the City University of New York New York New York USA

2. Bureau of Water Supply New York City Department of Environmental Protection Kingston New York USA

Abstract

AbstractPredictive models of disinfection byproducts (DBPs) formation in treated drinking water have been widely used to guide operational decisions. However, very few studies have addressed the issue of managing DBPs through watershed protection programs and proactive management of water supply systems through predictive modeling of DBP formation potential in source waters. Here, we propose a two‐component, simple statistical approach to predict the formation potentials of the sum of five haloacetic acids (HAA5fp) and total trihalomethanes (TTHMfp) in source water streams using environmental variables and ultraviolet absorbance at 254 nm wavelength (UV254) as a surrogate for DBP precursors. In the first component of the model, using three feature selection regression models and cross‐validation of subsets of the selected predictors, we identified three commonly monitored variables—streamflow, soil temperature, and total phosphorus for predicting UV254. In the second component, HAA5fp and TTHMfp are predicted from UV254. The approach is successfully demonstrated for two source water streams of the New York City water supply system (R2 was 0.8, and 0.7–0.8 for the two model components). Long‐term predictions of HAA5fp and TTHMfp showed distinct seasonal patterns that are linked to differences in land uses of the two watersheds. Moreover, sensitivity analysis showed that transport processes were important in one watershed whereas production processes were more important in the other.

Funder

Federal Emergency Management Agency

State University of New York

University at Albany

Publisher

Wiley

Subject

Earth-Surface Processes,Water Science and Technology,Ecology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3