Genome‐wide search reveals the uniqueness of DNA regions associated with coat color and innate immunity in Hokkaido Native Horse

Author:

Amano Tomoko1ORCID,Yokawa Haruhi2,Masuda Yutaka3,Tozaki Teruaki4,Kawai Masahito5,Shirai Kouichi6

Affiliation:

1. Laboratory of Animal Genetics, Department of Sustainable Agriculture, College of Agriculture, Food and Environment Sciences Rakuno Gakuen University Hokkaido Japan

2. Laboratory of Animal Genetics, Graduate School of Dairy Science Rakuno Gakuen University Hokkaido Japan

3. Laboratory of Animal Breeding, Department of Sustainable Agriculture, College of Agriculture, Food and Environment Sciences Rakuno Gakuen University Hokkaido Japan

4. Genetic Analysis Department Laboratory of Racing Chemistry Tochigi Japan

5. Field Science Center for Northern Biosphere Hokkaido University Hokkaido Japan

6. Hokkaido Native Horse Conservation Association Hokkaido Japan

Abstract

AbstractHokkaido Native Horse (HKD) is a horse breed native to Hokkaido in Japan known for the traits such as coat color with no white spots and adaptability to the local cold climate. To examine whether those traits of HKD are conferred at the DNA level, we attempted to identify fixed DNA regions in HKD individuals, that is, the selection signatures of HKD. A comparison of genome‐wide single nucleotide polymorphism genotypes in 58 HKD individuals by principal component analysis, and cluster analysis between breeds, including HKD, and within the HKD individuals indicated the genetic independence of HKD as a breed. Tajima's D analysis and runs of homozygosity analysis identified 23 selection signatures unique to HKD (P < 0.05), and following database search found 20 traits that were associated with those selection signatures; among these traits, coat color traits, face and body markings, showed the highest important value (0.50 and 0.46). Enrichment analysis of genes in the selection signatures identified six gene ontology terms (P < 0.05), and a term related to innate immunity (regulation of defense response; GO:0031347) showed the highest positive fold enrichment value (7.13). These results provide the first scientific evidence of a genetic basis for the traits of HKD.

Publisher

Wiley

Subject

General Agricultural and Biological Sciences,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3