Translational patterns of ionotropic glutamate and GABA receptors during brain development and behavioral stimuli revealed by polysome profiling

Author:

Peng Yinghui1,Huang Miaoqi1,Xie Jiaoyan1,Shu Beiyi1,Wang Xiaojun12,Liao Yumei13,Xu Junyu2,Shi Lei13ORCID

Affiliation:

1. JNU‐HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy Jinan University Guangzhou Guangdong China

2. Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology Zhejiang University School of Medicine Hangzhou China

3. Department of Cardiovascular Surgery The First Affiliated Hospital, Jinan University Guangzhou China

Abstract

AbstractmRNA translation is critical for regulation of various aspects of the nervous system. Ionotropic glutamate and gamma‐aminobutyric acid type A (GABAA) receptors are fundamental synaptic ion channels that control excitatory and inhibitory synaptic transmission, respectively. However, little is known about the translation of these receptors during brain development and function. By utilizing polysome profiling, a powerful tool for investigating translational machinery and mRNA translational states, we characterized the translational patterns of α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid (AMPA), N‐methyl‐d‐aspartate (NMDA), and GABAA receptor subunits, and compared them with total mRNA and protein levels during mouse brain development, in different brain regions, and in response to behavioral stimuli. Most of the receptor subunits exhibited developmental changes at total mRNA, translation, and protein levels, among which translation of Gria1, Gria2, Grin1, Grin2a, Gabra1, and Gabrg2 contributed greatly to their protein levels. Most of the receptor subunits also displayed differentiated levels of total mRNA, translation, and protein in the prefrontal cortex and hippocampus, among which translation of Gria1, Gria2, Gabrb2, and Gabrg2 contributed to their protein levels. Finally, we showed that acute foot shock stress had a rapid influence in both the prefrontal cortex and hippocampus, with the prefrontal cortex displaying more changes at translational and protein levels. Notably, Grin2a is translationally repressed by stress which was followed by a decrease of GluN2A protein in both brain regions. Together, this study provides a new understanding of the translational patterns of critical ionotropic synaptic receptors during brain development and behavioral stress.image

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Cellular and Molecular Neuroscience,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3