Insecticide resistance management strategies for public health control of mosquitoes exhibiting polygenic resistance: A comparison of sequences, rotations, and mixtures

Author:

Hobbs Neil Philip1ORCID,Weetman David1,Hastings Ian Michael2

Affiliation:

1. Department of Vector Biology Liverpool School of Tropical Medicine Pembroke Place Liverpool L3 5QA UK

2. Department of Tropical Disease Biology Liverpool School of Tropical Medicine Pembroke Place Liverpool L3 5QA UK

Abstract

AbstractMalaria control uses insecticides to kill Anopheles mosquitoes. Recent successes in malaria control are threatened by increasing levels of insecticide resistance (IR), requiring insecticide resistance management (IRM) strategies to mitigate this problem. Field trials of IRM strategies are usually prohibitively expensive with long timeframes, and mathematical modeling is often used to evaluate alternative options. Previous IRM models in the context of malaria control assumed IR to have a simple (monogenic) basis, whereas in natural populations, IR will often be a complex polygenic trait determined by multiple genetic variants. A quantitative genetics model was developed to model IR as a polygenic trait. The model allows insecticides to be deployed as sequences (continuous deployment until a defined withdrawal threshold, termed “insecticide lifespan”, as indicated by resistance diagnosis in bioassays), rotations (periodic switching of insecticides), or full‐dose mixtures (two insecticides in one formulation). These IRM strategies were compared based on their “strategy lifespan” (capped at 500 generations). Partial rank correlation and generalized linear modeling was used to identify and quantify parameters driving the evolution of resistance. Random forest models were used to identify parameters offering predictive value for decision‐making. Deploying single insecticides as sequences or rotations usually made little overall difference to their “strategy lifespan”, though rotations displayed lower mean and peak resistances. Deploying two insecticides in a full‐dose mixture formulation was found to extend the “strategy lifespan” when compared to deploying each in sequence or rotation. This pattern was observed regardless of the level of cross resistance between the insecticides or the starting level of resistance. Statistical analysis highlighted the importance of insecticide coverage, cross resistance, heritability, and fitness costs for selecting an appropriate IRM strategy. Full‐dose mixtures appear the most promising of the strategies evaluated, with the longest “strategy lifespans”. These conclusions broadly corroborate previous results from monogenic models.

Funder

Medical Research Council

Publisher

Wiley

Subject

General Agricultural and Biological Sciences,Genetics,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3