Dissolved silica affects the bulk iron redox state and recrystallization of minerals generated by photoferrotrophy in a simulated Archean ocean

Author:

Zhou Alice1ORCID,Templeton Alexis S.2,Johnson Jena E.1ORCID

Affiliation:

1. Department of Earth and Environmental Sciences University of Michigan Ann Arbor Michigan USA

2. Department of Geological Sciences University of Colorado Boulder Colorado USA

Abstract

AbstractChemical sedimentary deposits called Banded Iron Formations (BIFs) are one of the best surviving records of ancient marine (bio)geochemistry. Many BIF precursor sediments precipitated from ferruginous, silica‐rich waters prior to the Great Oxidation Event at ~2.43 Ga. Reconstructing the mineralogy of BIF precursor phases is key to understanding the coevolution of seawater chemistry and early life. Many models of BIF deposition invoke the activity of Fe(II)‐oxidizing photoautotrophic bacteria as a mechanism for precipitating mixed‐valence Fe(II,III) and/or fully oxidized Fe(III) minerals in the absence of molecular oxygen. Although the identity of phases produced by ancient photoferrotrophs remains debated, laboratory experiments provide a means to explore what their mineral byproducts might have been. Few studies have thoroughly characterized precipitates produced by photoferrotrophs in settings representative of Archean oceans, including investigating how residual Fe(II)aq can affect the mineralogy of expected solid phases. The concentration of dissolved silica (Si) is also an important variable to consider, as silicate species may influence the identity and reactivity of Fe(III)‐bearing phases. To address these uncertainties, we cultured Rhodopseudomonas palustris TIE‐1 as a photoferrotroph in synthetic Archean seawater with an initial [Fe(II)aq] of 1 mM and [Si] spanning 0–1.5 mM. Ferrihydrite was the dominant precipitate across all Si concentrations, even with substantial Fe(II) remaining in solution. Consistent with other studies of microbial iron oxidation, no Fe‐silicates were observed across the silica gradient, although Si coprecipitated with ferrihydrite via surface adsorption. More crystalline phases such as lepidocrocite and goethite were only detected at low [Si] and are likely products of Fe(II)‐catalyzed ferrihydrite transformation. Finally, we observed a substantial fraction of Fe(II) in precipitates, with the proportion of Fe(II) increasing as a function of [Si]. These experimental results suggest that photoferrotrophy in a Fe(II)‐buffered ocean may have exported Fe(II,III)‐oxide/silica admixtures to BIF sediments, providing a more chemically diverse substrate than previously hypothesized.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3