Compositional variation of the Zechstein Group in the Norwegian North sea: Implications for underground storage in salt caverns

Author:

Marín Dora1ORCID,Cardozo Néstor2,Escalona Alejandro2

Affiliation:

1. Exploration Vår Energi Sandnes Norway

2. Department of Energy Resources University of Stavanger Stavanger Norway

Abstract

AbstractHalite beds in the upper Permian Zechstein Group represent an opportunity for the future development of underground storage caverns. However, geological factors such as lithological heterogeneities, cap rock characteristics and depth can affect the sealing capacity and the integrity of the cavern or contaminate the stored fluid. The main objective of this paper is to evaluate these factors focusing on the compositional variation of the Zechstein Group in different salt structures in the Norwegian North Sea, and related opportunities and challenges for salt cavern storage. Based on deformation style, geometry, height and thickness of the salt structures, we have divided the Zechstein Group into four main categories: (1) thin beds, which can be either carbonate‐anhydrite or clastic dominated. Halite is absent and therefore there is no potential for the development of salt caverns. (2 and 3) bedded to weakly deformed evaporites and intermediate size salt structures, where thick halite beds of more than 300 m are present, but they are usually deeper than 2000 m. Lithological heterogeneities in the halite consist of a mix of competent and incompetent (K‐Mg salts) lithologies. (4) Tall diapirs, characterized by shallower structures (<2000 m), with large deformation and poor seismic image. Thin layers of incompetent K‐Mg salts are observed in these diapirs. The composition, thickness and deformation of the cap rock vary greatly in the area. Thick halite beds are recognized in most salt structures, suggesting an opportunity for underground storage. The challenges are related to the depth of the halite, amount and type of heterogeneities, characteristics of the cap rock and deformation in the different salt structures. These results also have implications for the distribution of reservoir and source rocks, and the evolution of the Northern Permian Basin.

Publisher

Wiley

Subject

Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3