Source‐to‐sink mass‐balance analysis of an ancient wave‐influenced sediment routing system: Middle Jurassic Brent Delta, Northern North Sea, offshore UK and Norway

Author:

Okwara Ikenna C.12,Hampson Gary J.1ORCID,Whittaker Alexander C.1,Roberts Gareth G.1,Ball Patrick W.3

Affiliation:

1. Department of Earth Science and Engineering Imperial College London London UK

2. Department of Geology University of Nigeria Nsukka Nigeria

3. Department of Geosciences Colorado State University Fort Collins Colorado USA

Abstract

AbstractSediment mass‐balance analysis provides key constraints on stratigraphic architecture and its controls. We use the data‐rich Middle Jurassic Brent Delta sediment routing system in the proto‐Viking Graben, Northern North Sea, to estimate sediment budgets and mass‐balance between source areas and depositional sinks. Published studies are synthesised to provide an age‐constrained sequence stratigraphic framework, consisting of four previously defined genetic sequences (J22, J24, J26, J32). Genetic sequence J32 (3.9 Myr) records transverse progradation of basin‐margin deltas, sourced from the Shetland Platform to the west and Norwegian Landmass to the east. Genetic sequences J24 (1.1 Myr) and J26 (0.9 Myr) record the rapid progradation and subsequent aggradation of the Brent Delta along the basin axis, sourced from the uplifted Mid‐North Sea High to the south, and the western and eastern source regions. Genetic sequence J32 (2.2 Myr) records the retreat of the Brent Delta. Sediment budgets for the four genetic sequences are estimated using palaeogeographical reconstructions, isopach maps, and sedimentological analysis of core and well‐log data. The estimated net‐depositional sediment budget for the mapped Brent Delta system is 2.0–2.8 Mt/year. Temporal variations in net‐depositional sediment budget were driven by changes in tectonic boundary conditions, such as the onset of uplift before the deposition of genetic sequence J24. Over the same time period, the Shetland Platform, Norwegian Landmass and Mid‐North Sea High source regions are estimated to have supplied 2.3–5.6, 5.0–14.1, and 2.8–9.4 Mt/year of sediment, respectively, using the BQART sediment load model and independent geometrical reconstruction of eroded volumes, which are constrained by isostatic uplift estimates based on the geochemistry of syn‐depositional volcanic rocks. The net‐depositional sediment budget in the sink is an order‐of‐magnitude smaller than the total sediment budget supplied by the source regions (13.9–23 Mt/year). This discrepancy suggests that along‐shore transport by wave‐generated currents into the coeval Faroe‐Shetland Basin and/or down‐dip transport by gravity flows into the coeval western Møre Basin played a key role in redistributing sediments away from the Brent Delta system.

Funder

Petroleum Technology Development Fund

Publisher

Wiley

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3