Both stimulus‐specific and configurational features of multiple visual stimuli shape the spatial ventriloquism effect

Author:

Kayser Christoph1ORCID,Debats Nienke1ORCID,Heuer Herbert12

Affiliation:

1. Department of Cognitive Neuroscience Universität Bielefeld Bielefeld Germany

2. Leibniz Research Centre for Working Environment and Human Factors Dortmund Germany

Abstract

AbstractStudies on multisensory perception often focus on simplistic conditions in which one single stimulus is presented per modality. Yet, in everyday life, we usually encounter multiple signals per modality. To understand how multiple signals within and across the senses are combined, we extended the classical audio‐visual spatial ventriloquism paradigm to combine two visual stimuli with one sound. The individual visual stimuli presented in the same trial differed in their relative timing and spatial offsets to the sound, allowing us to contrast their individual and combined influence on sound localization judgements. We find that the ventriloquism bias is not dominated by a single visual stimulus but rather is shaped by the collective multisensory evidence. In particular, the contribution of an individual visual stimulus to the ventriloquism bias depends not only on its own relative spatio‐temporal alignment to the sound but also the spatio‐temporal alignment of the other visual stimulus. We propose that this pattern of multi‐stimulus multisensory integration reflects the evolution of evidence for sensory causal relations during individual trials, calling for the need to extend established models of multisensory causal inference to more naturalistic conditions. Our data also suggest that this pattern of multisensory interactions extends to the ventriloquism aftereffect, a bias in sound localization observed in unisensory judgements following a multisensory stimulus.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3