Measuring technical efficiency of Spanish pig farming: Quantile stochastic frontier approach

Author:

Cabas Monje Juan1ORCID,Guesmi Bouali2ORCID,Ait Sidhoum Amer3ORCID,Gil José María2ORCID

Affiliation:

1. Facultad de Ciencias Empresariales, Grupo de Investigación en Agronegocios Universidad del Bío‐Bío Concepción Chile

2. Center for Agro‐Food Economics and Development (CREDA‐UPC‐IRTA) Castelldefels Spain

3. Natural Resources Institute Finland (Luke), Business Economics Helsinki Finland

Abstract

AbstractThe pig meat production plays a significant role in the Spanish agrofood system. The assessment of the efficiency performance with which farmers are operating is necessary to define adequate policy and management strategies. In this context, this study aimed to determine the technical efficiency (TE) performance of pig farms and to examine the key factors that may affect the production system in Spain. To do so, the analysis relies on the quantile stochastic frontier model using a sample of Spanish pig farms. Results show a significant difference between production frontier parameters across the selected quantiles, which support the relevance of using the quantile regression approach. The optimal quantile for the stochastic frontier indicates an average TE level of 75%. In addition, empirical findings suggest that pig farmers in Spain give more importance to the adoption of high technology to improve their economic and technical performance as well as their competitiveness at the European pig market.

Publisher

Wiley

Subject

Economics and Econometrics,Agricultural and Biological Sciences (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3