Deep learning‐based aggregate analysis to identify cut‐off points for decision‐making in pancreatic cancer detection

Author:

Dzemyda Gintautas1ORCID,Kurasova Olga1,Medvedev Viktor1,Šubonienė Aušra1,Gulla Aistė2,Samuilis Artūras3,Jagminas Džiugas4,Strupas Kęstutis2

Affiliation:

1. Institute of Data Science and Digital Technologies Vilnius University Vilnius Lithuania

2. Institute of Clinical Medicine, Faculty of Medicine Vilnius University Vilnius Lithuania

3. Institute of Biomedical Sciences, Department of Radiology, Nuclear Medicine and Medical Physics, Faculty of Medicine Vilnius University Vilnius Lithuania

4. Radiology and Nuclear Medicine Center Vilnius University Hospital Santaros Klinikos Vilnius Lithuania

Abstract

AbstractThis study addresses the problem of detecting pancreatic cancer by classifying computed tomography (CT) images into cancerous and non‐cancerous classes using the proposed deep learning‐based aggregate analysis framework. The application of deep learning, as a branch of machine learning and artificial intelligence, to specific medical challenges can lead to the early detection of diseases, thus accelerating the process towards timely and effective intervention. The concept of classification is to reasonably select an optimal cut‐off point, which is used as a threshold for evaluating the model results. The choice of this point is key to ensure efficient evaluation of the classification results, which directly affects the diagnostic accuracy. A significant aspect of this research is the incorporation of private CT images from Vilnius University Hospital Santaros Klinikos, combined with publicly available data sets. To investigate the capabilities of the deep learning‐based framework and to maximize pancreatic cancer diagnostic performance, experimental studies were carried out combining data from different sources. Classification accuracy metrics such as the Youden index, (0, 1)‐criterion, Matthew's correlation coefficient, the F1 score, LR+, LR−, balanced accuracy, and g‐mean were used to find the optimal cut‐off point in order to balance sensitivity and specificity. By carefully analyzing and comparing the obtained results, we aim to develop a reliable system that will not only improve the accuracy of pancreatic cancer detection but also have wider application in the early diagnosis of other malignancies.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3