The study of engagement at work from the artificial intelligence perspective: A systematic review

Author:

García‐Navarro Claudia1ORCID,Pulido‐Martos Manuel1ORCID,Pérez‐Lozano Cristina2ORCID

Affiliation:

1. Department of Psychology, University of Jaén Campus Las Lagunillas, Edificio Humanidades y Ciencias de la Educación (C5) Jaén Spain

2. Department Basic and Clinical Psychology and Psychobiology Universitat Jaume I Castellón de la Plana Spain

Abstract

AbstractEngagement has been defined as an attitude toward work, as a positive, satisfying, work‐related state of mind characterized by high levels of vigour, dedication, and absorption. Both its definition and its assessment have been controversial; however, new methods for its assessment, including artificial intelligence (AI), have been introduced in recent years. Therefore, this research aims to determine the state of the art of AI in the study of engagement. To this end, we conducted a systematic review in accordance with PRISMA to analyse the publications to date on the use of AI for the analysis of engagement. The search, carried out in six databases, was filtered, and 15 papers were finally analysed. The results show that AI has been used mainly to assess and predict engagement levels, as well as to understand the relationships between engagement and other variables. The most commonly used AI techniques are machine learning (ML) and natural language processing (NLP), and all publications use structured and unstructured data, mainly from self‐report instruments, social networks, and datasets. The accuracy of the models varies from 22% to 87%, and its main benefit has been to help both managers and HR staff understand employee engagement, although it has also contributed to research. Most of the articles have been published since 2015, and the geography has been global, with publications predominantly in India and the US. In conclusion, this study highlights the state of the art in AI for the study of engagement and concludes that the number of publications is increasing, indicating that this is possibly a new field or area of research in which important advances can be made in the study of engagement through new and novel techniques.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3