Arabic text classification based on analogical proportions

Author:

Bounhas Myriam1,Elayeb Bilel2ORCID,Chouigui Amina2,Hussain Amir3ORCID,Cambria Erik4

Affiliation:

1. LARODEC Research Laboratory, ISGT Tunis University Tunis Tunisia

2. RIADI Research Laboratory, ENSI Manouba University Manouba Tunisia

3. School of Computing, Engineering and Built Environment Edinburgh Napier University Edinburgh UK

4. School of Computer Science and Engineering Nanyang Technological University Singapore Singapore

Abstract

AbstractText classification is the process of labelling a given set of text documents with predefined classes or categories. Existing Arabic text classifiers are either applying classic Machine Learning algorithms such as k‐NN and SVM or using modern deep learning techniques. The former are assessed using small text collections and their accuracy is still subject to improvement while the latter are efficient in classifying big data collections and show limited effectiveness in classifying small corpora with a large number of categories. This paper proposes a new approach to Arabic text classification to treat small and large data collections while improving the classification rates of existing classifiers. We first demonstrate the ability of analogical proportions (AP) (statements of the form ‘x is to as is to ’), which have recently been shown to be effective in classifying ‘structured’ data, to classify ‘unstructured’ text documents requiring preprocessing. We design an analogical model to express the relationship between text documents and their real categories. Next, based on this principle, we develop two new analogical Arabic text classifiers. These rely on the idea that the category of a new document can be predicted from the categories of three others, in the training set, in case the four documents build together a ‘valid’ analogical proportion on all or on a large number of components extracted from each of them. The two proposed classifiers (denoted AATC1 and AATC2) differ mainly in terms of the keywords extracted for classification. To evaluate the proposed classifiers, we perform an extensive experimental study using five benchmark Arabic text collections with small or large sizes, namely ANT (Arabic News Texts) v2.1 and v1.1, BBC‐Arabic, CNN‐Arabic and AlKhaleej‐2004. We also compare analogical classifiers with both classical ML‐based and Deep Learning‐based classifiers. Results show that AATC2 has the best average accuracy (78.78%) over all other classifiers and the best average precision (0.77) ranked first followed by AATC1 (0.73), NB (0.73) and SVM (0.72) for the ANT corpus v2.1. Besides, AATC1 shows the best average precisions (0.88) and (0.92), respectively for the BBC‐Arabic corpus and AlKhaleej‐2004, and the best average accuracy (85.64%) for CNN‐Arabic over all other classifiers. Results demonstrate the utility of analogical proportions for text classification. In particular, the proposed analogical classifiers are shown to significantly outperform a number of existing Arabic classifiers, and in many cases, compare  favourably to the robust SVM classifier.

Funder

Engineering and Physical Sciences Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3