Portfolio construction using explainable reinforcement learning

Author:

Cortés Daniel González1ORCID,Onieva Enrique2ORCID,Pastor Iker2ORCID,Trinchera Laura1ORCID,Wu Jian1ORCID

Affiliation:

1. NEOMA Business School Mont Saint Aignan France

2. Faculty of Engineering University of Deusto Bilbao Spain

Abstract

AbstractWhile machine learning's role in financial trading has advanced considerably, algorithmic transparency and explainability challenges still exist. This research enriches prior studies focused on high‐frequency financial data prediction by introducing an explainable reinforcement learning model for portfolio management. This model transcends basic asset prediction, formulating concrete, actionable trading strategies. The methodology is applied in a custom trading environment mimicking the CAC‐40 index's financial conditions, allowing the model to adapt dynamically to market changes based on iterative learning from historical data. Empirical findings reveal that the model outperforms an equally weighted portfolio in out‐of‐sample tests. The study offers a dual contribution: it elevates algorithmic planning while significantly boosting transparency and interpretability in financial machine learning. This approach tackles the enduring ‘black‐box’ issue and provides a holistic, transparent framework for managing investment portfolios.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3