Marine predators optimization with deep learning model for video‐based facial expression recognition

Author:

Prasad Mal Hari1,Swarnalatha P.1ORCID

Affiliation:

1. School of Computer Science and Engineering Vellore Institute of Technology Vellore India

Abstract

AbstractVideo‐based facial expression recognition (VFER) technique intends to categorize an input video into different kinds of emotions. It remains a challenging issue because of the gap between visual features and emotions, problems in handling the delicate movement of muscles, and restricted datasets. One of the effective solutions to solve this problem is the exploitation of efficient features defining facial expressions to carry out FER. Generally, the VFER find useful in several areas like unmanned driving, venue management, urban safety management, and senseless attendance. Recent advances in computer vision and deep learning (DL) techniques enable the design of automated VFER models. In this aspect, this study establishes a new Marine Predators Optimization with Deep Learning Model for Video‐based Facial Expression Recognition (MPODL‐VFER) technique. The presented MPODL‐VFER technique mainly aims to classify different kinds of facial emotions in the video. To accomplish this, the presented MPODL‐VFER technique derives features using the deep convolutional neural network based densely connected network (DenseNet) model. The presented MPODL‐VFER technique employs MPO technique for the hyperparameter adjustment of the DenseNet model. Finally, Elman Neural Network (ENN) model is exploited for emotion recognition purposes. For assuring the enhanced recognition performance of the MPODL‐VFER approach, a comparison study was developed on benchmark dataset. The comprehensive results have shown the significant outcome of MPODL‐VFER model over other approaches.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3