Efficient integration of perceptual variational autoencoder into dynamic latent scale generative adversarial network

Author:

Cho Jeongik1ORCID,Krzyzak Adam1

Affiliation:

1. Department of Computer Science and Software Engineering Concordia University Montreal Quebec Canada

Abstract

AbstractDynamic latent scale GAN is an architecture‐agnostic encoder‐based generative model inversion method. This paper introduces a method to efficiently integrate perceptual VAE into dynamic latent scale GAN to improve the performance of dynamic latent scale GAN. When dynamic latent scale GAN is trained with a normal i.i.d. latent random variable and the latent encoder is integrated into the discriminator, a sum of a predicted latent random variable of real data and a scaled normal noise follows the normal i.i.d. random variable. Since this random variable is paired with real data and follows the latent random variable, it can be used for both VAE and GAN training. Furthermore, by considering the intermediate layer output of the discriminator as the feature encoder output, the VAE can be trained to minimise the perceptual reconstruction loss. The forward propagation & backpropagation for minimising this perceptual reconstruction loss can be integrated with those of GAN training. Therefore, the proposed method does not require additional computations compared to typical GAN or dynamic latent scale GAN. Integrating perceptual VAE to dynamic latent scale GAN improved the generative and inversion performance of the model.

Publisher

Wiley

Reference35 articles.

1. Abdal R. Qin Y. &Wonka P.(2019).Image2StyleGAN: How to embed images into the StyleGAN latent space? InProceedings of the IEEE/CVF International Conference on Computer Vision(ICCV) 2019 Seoul Korea. pp. 4432–4441.https://openaccess.thecvf.com/content_ICCV_2019/html/Abdal_Image2StyleGAN_How_to_Embed_Images_Into_the_StyleGAN_Latent_Space_ICCV_2019_paper.html

2. Abdal R. Zhu P. Mitra N. J. &Wonka P.(2021).Labels4Free: Unsupervised segmentation using StyleGAN. InInternational Conference on Computer Vision(ICCV) 2021 Virtual. pp. 13970–13979.https://openaccess.thecvf.com/content/ICCV2021/html/Abdal_Labels4Free_Unsupervised_Segmentation_Using_StyleGAN_ICCV_2021_paper.html

3. Chai L. Wulff J. &Isola P.(2021).Using latent space regression to analyze and leverage compositionality in GANs. InInternational Conference on Learning Representations (ICLR)2021 Vienna Austria May 4.https://openreview.net/forum?id=sjuuTm4vj0

4. Chai L. Zhu J. Y. Shechtman E. Isola P. &Zhang R.(2021).Ensembling with deep generative views. InConference on Computer Vision and Pattern Recognition(CVPR) 2021 Virtual. pp. 14997–15007.https://openaccess.thecvf.com/content/CVPR2021/html/Chai_Ensembling_With_Deep_Generative_Views_CVPR_2021_paper.html

5. Chen X. Duan Y. Houthooft R. Schulman J. Sutskever I. &Abbeel P.(2016).InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets. InAdvances in Neural Information Processing Systems(NeurIPS)2016 Barcelona Spain. pp. 2180‐2188.https://proceedings.neurips.cc/paper/2016/file/7c9d0b1f96aebd7b5eca8c3edaa19ebb-Paper.pdf

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3