Palaeogeography and 3D variability of a dynamically uplifted shelf: Observations from seismic stratigraphy of the Palaeocene East Shetland Platform

Author:

Valore Lucas Albanese1ORCID,Sømme Tor Oftedal12,Patruno Stefano3,Robin Cécile4,Guillocheau François4,Eide Christian Haug1ORCID

Affiliation:

1. Department of Earth Science University of Bergen Bergen Norway

2. Equinor ASA Oslo Norway

3. Department of Engineering, School of Sciences and Engineering University of Nicosia Nicosia Cyprus

4. Géosciences Rennes Université de Rennes 1 Rennes France

Abstract

AbstractIn the Palaeocene North Sea, pulses in turbidite fan deposition and shelfal progradation have been correlated with episodes of regional uplift caused by a precursor of the Icelandic Plume. In the East Shetland Platform, the specific impacts of dynamic uplift on the regional palaeogeographic evolution are less understood. Using new, high‐resolution 3D seismic data from an underexplored proximal area, we investigate the palaeogeography of the East Shetland Platform in terms of the extent and timing of erosion versus deposition, focusing on how these can be used to reconstruct changes in relative sea‐level along strike. Using a combination of well data, clinoform‐based seismic stratigraphy and seismic attribute analysis of >60,000 km2 of 3D data, we have obtained palaeogeographic maps of multiple Palaeocene to Early Eocene units, with high temporal resolution for the Late Palaeocene–Early Eocene Moray Group. This includes six unconformity‐bounded units marked by prograding clinoforms of the Dornoch Formation, which are covered by backstepping sequences of the Beauly Member (Balder Formation). Temporal and spatial changes in the distribution of downdip depocentres and updip unconformities indicate strong lateral variability in patterns of shelf accommodation/erosion and local sediment supply. This results from a complex interplay among laterally uneven relative sea‐level fall, inherited topography, time‐varied sediment entry point distribution and along‐shore sediment transport regimes. Unconformities and palaeogeographic maps suggest a first‐order control on erosion and sediment distribution promoted by the transiently and differentially uplifted topography of Shetland, which is characterized by an anomalous erosive history in the Bressay High, in the centre of our study area, where the Lower Dornoch Formation has been eroded and marked fluvial incision is observed. Ultimately, results indicate shorter‐wavelength and shorter‐period variations in uplift than what is typically assumed for dynamic topography, perhaps as a result of additional modulation by lithospheric structures or influence of previous rift‐related faults.

Funder

Horizon 2020 Framework Programme

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3