Mycoplasma pneumoniae lipids license TLR-4 for activation of NLRP3 inflammasome and autophagy to evoke a proinflammatory response

Author:

Luo H12,He J2,Qin L1,Chen Y1,Chen L1,Li R1,Zeng Y1,Zhu C1,You X1ORCID,Wu Y1

Affiliation:

1. Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China

2. Department of Clinical Laboratory, The Affiliated Nanhua Hospital of University of South China, Hengyang, China

Abstract

Summary Mycoplasma pneumoniae is an obligate pathogen that causes pneumonia, tracheobronchitis, pharyngitis and asthma in humans. It is well recognized that membrane lipoproteins are immunostimulants exerting as lipopolysaccharides (LPS) and play a crucial role in the pathogenesis of inflammatory responses upon M. pneumoniae infection. Here, we report that the M. pneumoniae-derived lipids are another proinflammatory agents. Using an antibody-neutralizing assay, RNA interference or specific inhibitors, we found that Toll-like receptor 4 (TLR-4) is essential for M. pneumoniae lipid-induced tumour necrosis factor (TNF)-α and interleukin (IL)-1β production. We also demonstrate that NLR family pyrin domain containing 3 inflammasome (NLRP3) inflammasome, autophagy and nuclear factor kappa B (NF-κB)-dependent pathways are critical for the secretion of proinflammatory cytokines, while inhibition of TLR-4 significantly abrogates these events. Further characterization revealed that autophagy-mediated inflammatory responses involved the activation of NF-κB. In addition, the activation of NF-κB promoted lipid-induced autophagosome formation, as revealed by assays using pharmacological inhibitors, 3-methyladenine (3-MA) and Bay 11-7082, or silencing of atg5 and beclin-1. These findings suggest that, unlike the response to lipoprotein stimulation, the inflammation in response to M. pneumoniae lipids is mediated by the TLR-4 pathway, which subsequently initiates the activation of NLRP3 inflammasome and formation of a positive feedback loop between autophagy and NF-κB signalling cascade, ultimately promoting TNF-α and Il-1β production in macrophages.

Funder

Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

University of South China

Publisher

Oxford University Press (OUP)

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3