Biologically driven isotopic fractionations in bivalves: from palaeoenvironmental problem to palaeophysiological proxy

Author:

Curley Allison N.1ORCID,Petersen Sierra V.1ORCID,Edie Stewart M.2ORCID,Guo Weifu3

Affiliation:

1. Department of Earth and Environmental Sciences University of Michigan Ann Arbor MI 48109 USA

2. Department of Paleobiology National Museum of Natural History, Smithsonian Institution Washington DC 20013 USA

3. Department of Geology and Geophysics Woods Hole Oceanographic Institution Woods Hole MA 02543 USA

Abstract

ABSTRACTTraditional bulk stable isotope (δ18O and δ13C) and clumped isotope (Δ47) records from bivalve shells provide invaluable histories of Earth's local and global climate change. However, biologically driven isotopic fractionations (BioDIFs) can overprint primary environmental signals in the shell. Here, we explore how conventional measurements of δ18O, δ13C, and Δ47 in bivalve shells can be re‐interpreted to investigate these physiological processes deliberately. Using intrashell Δ47 and δ18O alignment as a proxy for equilibrium state, we separately examine fractionations and/or disequilibrium occurring in the two major stages of the biomineralisation process: the secretion of the extrapallial fluid (EPF) and the precipitation of shell material from the EPF. We measured δ18O, δ13C, and Δ47 in fossil shells representing five genera (Lahillia, Dozyia, Eselaevitrigonia, Nordenskjoldia, and Cucullaea) from the Maastrichtian age [66–69 million years ago (Ma)] López de Bertodano Formation on Seymour Island, Antarctica. Material was sampled from both the outer and inner shell layers (OSL and ISL, respectively), which precipitate from separate EPF reservoirs. We find consistent δ18O values across the five taxa, indicating that the composition of the OSL can be a reliable palaeoclimate proxy. However, relative to the OSL baseline, ISLs of all taxa show BioDIFs in one or more isotopic parameters. We discuss/hypothesise potential origins of these BioDIFs by synthesising isotope systematics with the physiological processes underlying shell biomineralisation. We propose a generalised analytical and interpretive framework that maximises the amount of palaeoenvironmental and palaeobiological information that can be derived from the isotopic composition of fossil shell material, even in the presence of previously confounding ‘vital effects’. Applying this framework in deep time can expand the utility of δ18O, δ13C, and Δ47 measurements from proxies of past environments to proxies for certain biomineralisation strategies across space, time, and phylogeny among Bivalvia and other calcifying organisms.

Funder

Alfred P. Sloan Foundation

Woods Hole Oceanographic Institution

Publisher

Wiley

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Frontiers of Carbonate Clumped Isotope Thermometry;Annual Review of Earth and Planetary Sciences;2023-05-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3