Inferring the ecological and evolutionary determinants of community genetic diversity

Author:

Overcast Isaac12ORCID,Noguerales Víctor34ORCID,Meramveliotakis Emmanouil4,Andújar Carmelo3ORCID,Arribas Paula3,Creedy Thomas J.5,Emerson Brent C.3ORCID,Vogler Alfried P.56,Papadopoulou Anna4,Morlon Hélène1

Affiliation:

1. Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM Université PSL Paris France

2. Department of Vertebrate Zoology American Museum of Natural History New York New York USA

3. Instituto de Productos Naturales y Agrobiología (IPNA‐CSIC) San Cristóbal de La Laguna Spain

4. Department of Biological Sciences University of Cyprus Nicosia Cyprus

5. Department of Life Sciences Natural History Museum London UK

6. Department of Life Sciences Imperial College London Ascot UK

Abstract

AbstractUnderstanding the relative contributions of ecological and evolutionary processes to the structuring of ecological communities is needed to improve our ability to predict how communities may respond to future changes in an increasingly human‐modified world. Metabarcoding methods make it possible to gather population genetic data for all species within a community, unlocking a new axis of data to potentially unveil the origins and maintenance of biodiversity at local scales. Here, we present a new eco‐evolutionary simulation model for investigating community assembly dynamics using metabarcoding data. The model makes joint predictions of species abundance, genetic variation, trait distributions and phylogenetic relationships under a wide range of parameter settings (e.g. high speciation/low dispersal or vice versa) and across a range of community states, from pristine and unmodified to heavily disturbed. We first demonstrate that parameters governing metacommunity and local community processes leave detectable signatures in simulated biodiversity data axes. Next, using a simulation‐based machine learning approach we show that neutral and non‐neutral models are distinguishable and that reasonable estimates of several model parameters within the local community can be obtained using only community‐scale genetic data, while phylogenetic information is required to estimate those describing metacommunity dynamics. Finally, we apply the model to soil microarthropod metabarcoding data from the Troodos mountains of Cyprus, where we find that communities in widespread forest habitats are structured by neutral processes, while high‐elevation and isolated habitats act as an abiotic filter generating non‐neutral community structure. We implement our model within the ibiogen R package, a package dedicated to the investigation of island, and more generally community‐scale, biodiversity using community‐scale genetic data.

Funder

Agencia Estatal de Investigación

Horizon 2020 Framework Programme

Publisher

Wiley

Subject

Genetics,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3