Affiliation:
1. Interdisciplinary Centre for Plant Genomics, Department of Plant Molecular Biology University of Delhi South Campus India
2. University School of Biotechnology, Guru Gobind Singh Indraprastha University Dwarka, New Delhi India
Abstract
OsMADS29 (M29) is a crucial regulator of seed development in rice. The expression of M29 is strictly regulated at transcriptional as well as post‐transcriptional levels. The MADS‐box proteins are known to bind to DNA as dimers. However, in the case of M29, the dimerization also plays a vital role in its localization into the nucleus. The factor(s) that affect oligomerization and nuclear transport of MADS proteins have not yet been characterized. By using BiFC in transgenic BY‐2 cell lines and Yeast‐2‐hybrid assay (Y2H), we show that calmodulin (CaM) interacts with M29 in a Ca2+‐dependent manner. This interaction specifically takes place in the cytoplasm, probably in association with the endoplasmic reticulum. By generating domain‐specific deletions, we show that both sites in M29 are involved in this interaction. Further, by using BiFC‐FRET‐FLIM, we demonstrate that CaM may also help in the dimerization of two M29 monomers. Since most MADS proteins have CaM binding domains, the interaction between these proteins could be a general regulatory mechanism for oligomerization and nuclear transport.
Funder
Council of Scientific and Industrial Research, India
Department of Biotechnology, Government of West Bengal
University Grants Commission
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献