Effect of cell pressure on the electrochemical performance of all‐solid‐state lithium batteries with zero‐excess Li metal anode

Author:

Park Young Seon12,Kim Kangsanin1,Lee Jong‐Won3,Moon Ji‐Woong4,Park Hyung‐Ho5,Hwang Haejin1ORCID

Affiliation:

1. Department of Materials Science and Engineering Inha University Incheon Republic of Korea

2. Cell R&D Laboratory SolarEdge Technologies Korea Co., Ltd Seongnam Republic of Korea

3. Department of Materials Science and Engineering Hanyang University Seoul Republic of Korea

4. Battery Materials Research Center Research Institute of Industrial Science and Technology Pohang Republic of Korea

5. Department of Materials Science and Engineering Yonsei University Seoul Republic of Korea

Abstract

AbstractAll‐solid‐state cells (ASSCs) typically operate at a specific pressure to ensure good contact between the solid electrolyte and the electrode‐active materials. However, establishing the ideal cell pressure is challenging because of the various cell structures, the mechanical characteristics of solid electrolytes, and the extent to which the volume of the electrodes changes during cycling. In this study, we propose a specially designed cell assembly that adjusts to the changes in volume that occur during cycling while maintaining a constant cell pressure. The evaluations indicate that the spring in the cell assembly effectively reduces the stress incurred from the volume expansion that occurs in the electrode during charging (lithiation) and the volume contraction that occurs during discharging (delithiation) while maintaining the prescribed cell pressure. The capacity fading—as a function of the cycle number—decreases when operating ASSCs comprising a cell assembly that include a spring, compared with those that exclude a spring. Focused ion beam–scanning electron microscope reveals no cracks and delamination in the LiNi0.8Co0.1Mn0.1O3 (NCM811) composite cathode of the ASSCs, operated at 25 MPa, with a spring‐equipped assembly. The Ag nanolayer that deposits on the Cu foil is an effective collector metal, forming a dense lithium plating layer on the Ag/Cu foil anode.

Funder

National Research Foundation of Korea

Publisher

Wiley

Subject

Materials Chemistry,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3