Thermal stability of MxOy‐doped zirconia aerogels (M = Y, Yb, Gd, Ce, Ca) studied through 1200°C

Author:

Olson Nathaniel S.1ORCID,Hurwitz Frances I.2,Stokes Jamesa L.2,Guo Haiquan3,Rogers Richard B.2,Krogstad Jessica A.1

Affiliation:

1. Department of Materials Science and Engineering University of Illinois at Urbana‐Champaign Urbana Illinois USA

2. NASA Glenn Research Center Cleveland Ohio USA

3. Universities Space Research Association Cleveland Ohio USA

Abstract

AbstractThe high porosities and low densities of ceramic aerogels offer outstanding insulative performance in applications where weight is a critical factor. The high surface area‐to‐volume ratios and specific surface areas provide extremely low thermal conductivity, but also contribute to rapid densification of the pore structure at elevated temperatures. This densification diminishes their favorable properties and inhibits use of aerogels in high‐temperature applications. This work contributes to a design framework for thermally stable aerogels via the study of dopant chemistry (Y, Yb, Gd, Ca, Ce) in zirconia aerogels. The structural evolution was studied through 1200°C using nitrogen physisorption, scanning electron microscopy, and X‐ray diffraction. The role of dopant identity and concentration in thermal stability was elucidated. In the context of the design framework, dopant chemistry is an aggregate for many closely related material properties, each of which may contribute to aerogel structural evolution. To develop a truly predictive design framework for ceramic‐based aerogels, systematic and comprehensive evaluation of thermodynamic and kinetic properties must be performed in conjunction with studies on structural evolution.

Publisher

Wiley

Subject

Materials Chemistry,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3