Stepwise dissolution of silica surface in alkaline solution revealed by molecular modeling

Author:

Sun Ming123ORCID,Gao Xiaojian23ORCID,Zhang Zhe1,Zou Chaoying23,Xin Dabo4,Geng Guoqing1

Affiliation:

1. Department of Civil and Environmental Engineering National University of Singapore Singapore Singapore

2. Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education Harbin Institute of Technology Harbin China

3. Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology Harbin Institute of Technology Harbin China

4. College of Civil Engineering and Architecture Hainan University Hainan China

Abstract

AbstractThe atomic scale solid–liquid interfacial process dominates the macro‐dissolution of silica, yet its direct experimental observation is challenging. Here we employed the reactive molecular dynamics to model this process in alkaline condition. An elevated temperature strategy under canonical ensemble (NVT) was applied to accelerate the process for sufficient sampling at temporal domain. A stepwise transformation from fully linked SiO4 network (Q3 and Q4) to reduced linkage and eventually aqueous species (Q0) was revealed. The simulated dissolution rate agrees well with the value predicted by empirical model. By tracing hydrogen atoms, we found that the dehydroxylated silica surfaces in alkaline electrolyte solutions underwent a transition from Si–O–Si bond cleavage‐dominated (mainly reacted with OH) to hydroxylation‐dominated surface reactions. The free‐energy reconstruction of well‐tempered metadynamics reveals that 1500 K accelerates dissolution without altering the reaction pathways. These findings offer novel insights into the evolution of atomic‐scale surface configurations during the dissolution kinetics of silica.

Publisher

Wiley

Subject

Materials Chemistry,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3