Affiliation:
1. College of Materials Science and Engineering Xi'an University of Architecture and Technology Xi'an China
2. College of Materials Science and Engineering Luoyang Institute of Science and Technology Luoyang Luoyang China
3. Beijing Jinyu Tongda Refractory Technology Co., Ltd. Beijing China
Abstract
AbstractThe high level of gas permeability can effectively reduce the explosive spalling risk of refractory castables. The hydratable magnesium carboxylate (HMC) is expected to improve the permeability of castables owing to the thermal decomposition of the HMC hydrates. This study compared the gas permeability and explosive spalling resistance of HMC bonded refractory castables (HMCC) with calcium aluminate cement bonded refractory castables (CACC). Thermal decomposition of (Mg3(C6H5O7)2∙11H2O) (hydrates of HMC), drying behavior, and the pores size distribution of castables were investigated. The level of gas permeability of HMCC is higher than that of CACC, which was confirmed by the higher values of Darcian k1 and non‐Darcian k2. The degas temperatures of HMC hydrates (156°C) and HMCC (432°C) are lower than those of CAC hydrates (289°C) and CACC (536°C) at a heating rate of 20°C/min, respectively. The large‐size and more permeable pores in HMCC were obtained according to the mercury intrusion porosimeter (MIP) results, which formed the connected paths for gases (H2O, CO2, C2H4, CO, CH4) released from the castables.
Funder
National Natural Science Foundation of China
Subject
Materials Chemistry,Ceramics and Composites
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献