Structure‐mechanical properties correlation in bulk LiPON glass produced by nitridation of metaphosphate melts

Author:

Torres Victor M.1,Kalnaus Sergiy2ORCID,Martin Steve W.1ORCID,Duggan Caitlin3,Westover Andrew S.4

Affiliation:

1. Department of Materials Science and Engineering Iowa State University Ames Iowa USA

2. Computational Sciences and Engineering Division Oak Ridge National Laboratory Oak Ridge Tennessee USA

3. Materials Science and Technology Division Oak Ridge National Laboratory Oak Ridge Tennessee USA

4. Chemical Sciences Division Oak Ridge National Laboratory Oak Ridge Tennessee USA

Abstract

AbstractThe glassy solid electrolyte Lithium phosphorous oxynitride (LiPON) has been widely researched in thin film solid state battery format due to its outstanding stability when cycled against lithium. In addition, recent reports show thin film LiPON having interesting mechanical behaviors, especially its ability to resist micro‐scale cracking via densification and shear flow. In the present study, we have produced bulk LiPON glasses with varying nitrogen contents by ammonolysis of LiPO3 melts. The resulting compositions were determined to be LiPO3‐3z/2Nz, where 0 ≤ z ≤ 0.75, and the z value of 0.75 is among the highest ever reported for this series of LiPON glasses. The short‐range order structures of the different resulting compositions were characterized by infrared, Raman, 31P magic angle spinning nuclear magnetic resonance, and X‐ray photoelectron spectroscopies. Instrumented nano‐indentation was used to measure mechanical properties. It was observed that similar to previous studies, both trigonally coordinated (Nt) and doubly bonded (Nd) N co‐exist in the glasses in about the same amounts for z ≤ 0.36, the limit of N content in most previous studies. For glasses with z > 0.36, it was found that the fraction of the Nt increased significantly while the fraction of Nd correspondingly decreased. The incorporation of nitrogen increased both the elastic modulus and hardness of the glass by approximately a factor of 1.5 when N/P ratio reaches 0.75. At the same time, an apparent embrittlement of the glass was observed due to nitridation, which was revealed by nanoindentation with an extra sharp nanoindenter tip.

Funder

National Science Foundation

U.S. Department of Energy

Publisher

Wiley

Subject

Materials Chemistry,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3