Affiliation:
1. Department of Medical Biochemistry, Faculty of Medicine Cyprus International University Nicosia Cyprus
2. Department of Medical Genetics, Faculty of Medicine Karadeniz Technical University Trabzon Turkey
3. Department of Pediatric Neurology Kartal Dr. Lütfi Kırdar City Hospital İstanbul Turkey
Abstract
AbstractDravet syndrome and genetic epilepsy with febrile seizures plus (GEFS+) are both epilepsy syndromes that can be attributed to deleterious mutations occurring in SCN1A, the gene encoding the pore‐forming α‐subunit of the NaV1.1 voltage‐gated sodium channel predominantly expressed in the central nervous system. In this research endeavor, our goal is to expand our prior cohort of Turkish patients affected by SCN1A‐positive genetic epilepsy disorders. This will be accomplished by incorporating two recently discovered and infrequent index cases who possess a novel biallelic (homozygous) SCN1A missense variant, namely E158G, associated with Dravet syndrome. Furthermore, our intention is to use computational techniques to predict the molecular phenotypes of each distinct SCN1A variant that has been detected to date within our center. The correlation between genotype and phenotype in Dravet syndrome/GEFS+ is intricate and necessitates meticulous clinical investigation as well as advanced scientific exploration. Broadened mechanistic and structural insights into NaV1.1 dysfunction offer significant promise in facilitating the development of targeted and effective therapies, which will ultimately enhance clinical outcomes in the treatment of epilepsy.
Subject
General Pharmacology, Toxicology and Pharmaceutics,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献