Climatic fluctuations, geographic features, and evolutionary forces: Shaping high genomic diversity and local adaptation in Muntiacus reevesi

Author:

Chen Guotao12,Sun Zhonglou1,Shi Wenbo1,Wang Hui1,Shi Guohui2,Hu Yibo3,Fan Huizhong3,Wu Qi2,Zhang Baowei1ORCID

Affiliation:

1. School of Life Sciences Anhui University Hefei China

2. State Key Laboratory of Mycology, Institute of Microbiology Chinese Academy of Sciences Beijing China

3. CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology Chinese Academy of Sciences Beijing China

Abstract

AbstractAimGenetic diversity is crucial for species adaptability. Understanding the mechanisms behind its formation and maintenance is essential for effective conservation. Recent studies have demonstrated that despite experiencing severe population bottlenecks, Muntiacus reevesi retains high genetic diversity and continues its northward migration, indicative of ongoing adaptive evolution. However, our comprehension of this phenomenon remains incomplete. The objective of this study is to explore the mechanisms underlying the formation of high genetic diversity and the genomic characteristics associated with local adaptation, using M. reevesi as a case study.LocationSouthern China.MethodsWe analysed resequencing data from 62 genomes and identified 29,124,081 high‐quality single‐nucleotide polymorphisms (SNPs). We used population genetics, demographic history, population differentiation, gene flow analysis software, and genotype‐environment association (GEA) models to assess the factors that have contributed to high genetic diversity and environmental adaptability in the historical climate and geographical context.ResultsThe study identified that during Pleistocene climatic fluctuations, M. reevesi diverged into eastern (DB and WJW populations) and western lineages (WL, BA, and QL populations), all displayed high genetic diversity. Historically, M. reevesi maintained large effective populations, but contemporary human‐induced threats have led to a significant decline. Population differentiation models suggest distinct expansion pathways for eastern and western lineages, resulting in population admixture, with mountain corridors facilitating gene flow and maintaining high genetic diversity. Additionally, environmental‐genotype analysis revealed local adaptation in the QL‐BA population, highlighting candidate adaptive genes (ME3 and PRKG1) potentially linked to cold adaptation and foraging behaviour.ConclusionThis study enhances our understanding of the mechanisms behind the high genetic diversity and environmental adaptability of M. reevesi, offering insights into how bottleneck populations maintain diversity, crucial for biogeographic research and conservation strategies for similar species.

Funder

Key Programme

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3