ETBHD‐HMF: A Hierarchical Multimodal Fusion Architecture for Enhanced Text‐Based Hair Design

Author:

He Rong1ORCID,Jiao Ge12ORCID,Li Chen1ORCID

Affiliation:

1. College of Computer Science and Technology Hengyang Normal University Hengyang China

2. Hunan Provincial Key Laboratory of Intelligent Information Processing and Application Hengyang China

Abstract

AbstractText‐based hair design (TBHD) represents an innovative approach that utilizes text instructions for crafting hairstyle and colour, renowned for its flexibility and scalability. However, enhancing TBHD algorithms to improve generation quality and editing accuracy remains a current research difficulty. One important reason is that existing models fall short in alignment and fusion designs. Therefore, we propose a new layered multimodal fusion network called ETBHD‐HMF, which decouples the input image and hair text information into layered hair colour and hairstyle representations. Within this network, the channel enhancement separation (CES) module is proposed to enhance important signals and suppress noise for text representation obtained from CLIP, thus improving generation quality. Based on this, we develop the weighted mapping fusion (WMF) sub‐networks for hair colour and hairstyle. This sub‐network applies the mapper operations to input image and text representations, acquiring joint information. The WMF then selectively merges image representation and joint information from various style layers using weighted operations, ultimately achieving fine‐grained hairstyle designs. Additionally, to enhance editing accuracy and quality, we design a modality alignment loss to refine and optimize the information transmission and integration of the network. The experimental results of applying the network to the CelebA‐HQ dataset demonstrate that our proposed model exhibits superior overall performance in terms of generation quality, visual realism, and editing accuracy. ETBHD‐HMF (27.8 PSNR, 0.864 IDS) outperformed HairCLIP (26.9 PSNR, 0.828 IDS), with a 3% higher PSNR and a 4% higher IDS.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3