Optimizing Surface Voxelization for Triangular Meshes with Equidistant Scanlines and Gap Detection

Author:

Delgado Díez S.1ORCID,Cerrada Somolinos C.1,Gómez Palomo S. R.1

Affiliation:

1. UNED Madrid Spain

Abstract

AbstractThis paper presents an efficient algorithm for voxelizing the surface of triangular meshes in a single compute pass. The algorithm uses parallel equidistant lines to traverse the interior of triangles, minimizing costly memory operations and avoiding visiting the same voxels multiple times. By detecting and visiting only the voxels in each line operation, the proposed method achieves better performance results. This method incorporates a gap detection step, targeting areas where scanline‐based voxelization methods might fail. By selectively addressing these gaps, our method attains superior performance outcomes. Additionally, the algorithm is written entirely in a single compute GLSL shader, which makes it highly portable and vendor independent. Its simplicity also makes it easy to adapt and extend for various applications. The paper compares the results of this algorithm with other modern methods, comprehensibly comparing the time performance and resources used. Additionally, we introduce a novel metric, the ‘Slope Consistency Value’, which quantifies triangle orientation's impact on voxelization accuracy for scanline‐based approaches. The results show that the proposed solution outperforms existing, modern ones and obtains better results, especially in densely populated scenes with homogeneous triangle sizes and at higher resolutions.

Publisher

Wiley

Reference31 articles.

1. AmanatidesJ. WooA.:A fast voxel traversal algorithm for ray tracing. InEurographics(1987) vol.87 pp.3–10.

2. Slicing‐based volumetric collision detection;Boyles M.;Journal of Graphics Tools,1999

3. Fast Voxelization of Three-Dimensional Synthetic Objects

4. Octree-Based Sparse Voxelization Using the GPU Hardware Rasterizer

5. Surface shading in the cuberille environment;Che L.‐s.;IEEE Computer Graphics and Applications,1985

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3