Differential regulation of miR-146a/FAS and miR-21/FASLG axes in autoimmune lymphoproliferative syndrome due to FAS mutation (ALPS-FAS)

Author:

Marega Lia Furlaneto1,Teocchi Marcelo Ananias1,dos Santos Vilela Maria Marluce1

Affiliation:

1. Laboratory of Pediatric Immunology, Center for Investigation in Pediatrics, Faculty of Medical Sciences, University of Campinas – UNICAMP, Campinas, SP, Brazil

Abstract

Summary Most cases of autoimmune lymphoproliferative syndrome (ALPS) have an inherited genetic defect involving apoptosis-related genes of the FAS pathway. MicroRNAs (miRNAs) are a class of small non-coding regulatory RNAs playing a role in the control of gene expression. This is the first report on miRNAs in ALPS patients. We studied a mother and son carrying the same FAS cell surface death receptor (FAS) mutation, but with only the son manifesting the signs and symptoms of ALPS-FAS. The aim was to analyse, by reverse transcription–quantitative polymerase chain reaction (RT–qPCR), the peripheral blood mononuclear cells (PBMC) relative expression of miR-146a and miR-21, including their passenger strands and respective targets (FAS and FASLG). In comparison with healthy matched control individuals, miR-21-3p was over-expressed significantly (P = 0·0313) in the son, with no significant change in the expression of miR-146a, miR-146a-3p and miR-21. In contrast, the mother had a slight under-expression of the miR-146a pair and miR-21-3p (P = 0·0625). Regarding the miRNA targets, FAS was up-regulated markedly for the mother (P = 0·0078), but down-regulated for the son (P = 0·0625), while FASLG did not have any significant alteration. Taken together, our finding clearly suggests a role of the miR-146a/FAS axis in ALPS-FAS variable expressivity in which FAS haploinsufficiency seems to be compensated only in the mother who had the miR-146a pair down-regulated. As only the son had the major clinical manifestations of ALPS-FAS, miR-21-3p should be investigated as playing a critical role in ALPS physiopathology, including the development of lymphoma.

Funder

São Paulo Research Foundation

Publisher

Oxford University Press (OUP)

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3