Resolving domain positions of cellobiose dehydrogenase by small angle X‐ray scattering

Author:

Motycka Bettina123,Csarman Florian1ORCID,Tscheliessnig Rupert24,Hammel Michal3,Ludwig Roland1ORCID

Affiliation:

1. Department of Food Science and Technology, Institute of Food Technology University of Natural Resources and Life Sciences, Vienna Austria

2. Department of Biotechnology, Institute of Bioprocess Science and Engineering University of Natural Resources and Life Sciences, Vienna Austria

3. Molecular Biophysics and Integrated Bioimaging Lawrence Berkeley National Laboratory CA USA

4. Division of Biophysics, Gottfried‐Schatz‐Research‐Center Medical University of Graz Austria

Abstract

The interdomain electron transfer (IET) between the catalytic flavodehydrogenase domain and the electron‐transferring cytochrome domain of cellobiose dehydrogenase (CDH) plays an essential role in biocatalysis, biosensors and biofuel cells, as well as in its natural function as an auxiliary enzyme of lytic polysaccharide monooxygenase. We investigated the mobility of the cytochrome and dehydrogenase domains of CDH, which is hypothesised to limit IET in solution by small angle X‐ray scattering (SAXS). CDH from Myriococcum thermophilum (syn. Crassicarpon hotsonii, syn. Thermothelomyces myriococcoides) was probed by SAXS to study the CDH mobility at different pH and in the presence of divalent cations. By comparison of the experimental SAXS data, using pair‐distance distribution functions and Kratky plots, we show an increase in CDH mobility at higher pH, indicating alterations of domain mobility. To further visualise CDH movement in solution, we performed SAXS‐based multistate modelling. Glycan structures present on CDH partially masked the resulting SAXS shapes, we diminished these effects by deglycosylation and studied the effect of glycoforms by modelling. The modelling shows that with increasing pH, the cytochrome domain adopts a more flexible state with significant separation from the dehydrogenase domain. On the contrary, the presence of calcium ions decreases the mobility of the cytochrome domain. Experimental SAXS data, multistate modelling and previously reported kinetic data show how pH and divalent ions impact the closed state necessary for the IET governed by the movement of the CDH cytochrome domain.

Funder

Austrian Science Fund

National Institute of General Medical Sciences

National Cancer Institute

Publisher

Wiley

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3