Changes in trophic ecology of mobile predators in response to rainforest degradation

Author:

Kemp Victoria A.1,Grey Jonathan12,Hemprich‐Bennett David13ORCID,Rossiter Stephen J.1ORCID,Lewis Owen T.3ORCID,Wilkinson Clare L.4ORCID,Clare Elizabeth L.15ORCID,Kratina Pavel1ORCID

Affiliation:

1. School of Biological and Behavioural Sciences Queen Mary University of London London UK

2. Lancaster Environment Centre Lancaster University Bailrigg Lancaster UK

3. Department of Biology University of Oxford South Parks Road Oxford UK

4. Department of Biological Sciences National University of Singapore 16 Science Drive 4 Singapore City Singapore

5. Department of Biology York University 4700 Keele Streer Toronto Ontario Canada

Abstract

Abstract Accelerating loss and degradation of tropical forests has led to a pressing need to understand the conservation value of remaining forests. Whereas most studies focus on the responses in community composition and taxonomic richness, more sensitive responses to habitat degradation are likely to be apparent through changes in the trophic complexity of generalist predators. Food web theory predicts that both trophic position and niche breadth of predators decrease with habitat degradation, with consequences for biotic interactions and ecosystem functioning. Using a stable isotope approach, we analysed trophic positions and niche breaths of an important guild of top predators: insectivorous bats, in the tropical forests of Sabah, Borneo. We aimed to determine the responses in their trophic ecology across an experimental gradient of forest degradation at different spatial scales. At the landscape scale, trophic niche breadth contracted substantially (78%) in association with a narrow reduction (26%) in forest cover. However, food chains were longer in ecosystems with lower tree canopies, representative of localised habitat simplification. Marked differences in trophic niche breath of and trophic position between echolocation guilds provided further evidence for inter‐guild niche partitioning within bat assemblages. Overall, the functionally important shifts in trophic pathways discriminated among habitats of varying degrees of degradation more reliably than conventional community descriptors, such as diversity metrics. Synthesis and applications. This study reveals that habitat quality thresholds—below which we see substantial changes to trophic complexity—are higher than previously considered. Our analysis suggests that patches of forest with cover above 90% should be prioritised for conservation over more highly degraded ecosystems. As these effects were detected after approximately 30 years post‐logging, they likely reflect relatively long‐term responses to forest degradation.

Funder

Natural Environment Research Council

Publisher

Wiley

Subject

Ecology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3